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HÖLDER ESTIMATES AND REGULARITY FOR
HOLOMORPHIC AND HARMONIC FUNCTIONS

PETER LI & JIAPING WANG

Abstract
In this paper, we proved that if a singular manifold satisfies a weak mean
value property for positive subharmonic functions then one can derive an os-
cillation bound for bounded holomorphic functions. Moreover, if we further
assume that the volume decays at most polynomially at a singular point,
then we obtain a Hölder estimate of the holomorphic function at that point.
In a similar spirit, we also established a continuity estimate for bounded
harmonic functions, with a finite dimensional exception, at a singular point
of a manifold satisfying a weak mean value property and a polynolmial
volume decay condition.

0. Introduction

The theory of DeGiorgi-Nash-Moser asserts that if f ≥ 0 is a non-
constant solution to the partial differential equation

Lf = 0

on a ball B(2R) ⊂ R
n, with

L =
∂

∂xi

(
aij

∂

∂xj

)

being a uniformly elliptic operator of divergence form, then f must
satisfy the Harnack inequality

sup
B(R)

f ≤ C inf
B(R)

f
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for some constant C depending only on the ellipticity bounds of (aij) and
the dimension n. An upshot of the Harnack inequality is the oscillation
estimate, which states that there exist constants C > 0 and 0 < α ≤ 1,
such that if

ω(r) = sup
B(r)

f − inf
B(r)

f

denotes the oscillation of f over B(r), then

(0.1) ω(r) ≤ C
( r

R

)α
ω(R).

In particular, by letting r → 0, this implies the Cα regularity of f .
On the other hand, if f is defined on the whole R

n, by letting R → ∞
while keeping r fixed, this implies f must be constant if f satisfies the
growth condition

|f(x)| = o(|x|α).
For simplicity, let us refer this property as the α-Liouville property. One
can think of the α-Liouville property as the dual of the Cα regularity,
or perhaps Cα regularity at ∞.

Taking this on a manifold setting, by unraveling Moser’s original
argument [16, 4], one notes that the manifold only needs to satisfy a
Poincaré inequality, a Sobolev inequality, and volume doubling property
in order for Moser’s program to go through. The essence was further
illuminated by the works of Saloff-Coste [14, 15] and Grigor’yan [3],
that a Poincaré inequality and a volume doubling property suffice to
imply the Harnack inequality, hence the α-Liouville property and the
Cα regularity.

In [5], the first author proved if a manifold satisfies a mean value
inequality and a volume comparison condition, then the space of har-
monic functions that grow at most polynomially of degree d must be
finite dimensional. Later in [7], the authors gave an even weaker hy-
pothesis to ensure the finite dimensionality for harmonic functions. In
fact, the arguments in [5] and [7] are also valid for solutions of uniformly
elliptic operators of both divergence and non-divergence form. The au-
thors showed that if a manifold M satisfies a weak mean value property
(Definition 1) and has polynomial volume growth, then the space of
harmonic functions on M satisfying the growth condition

|f(x)| = O(rd(x))
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for some d > 0 must be finite dimensional. Consequently, as observed
in [7], if the manifold is in addition Kähler, then there are no non-
constant bounded holomorphic functions defined on M. This hinges on
the simple fact that powers of a holomorphic function are also holo-
morphic. Note that since the Sobolev inequality alone implies both
the weak mean value property by Moser’s iteration and the polynomial
volume growth [7], one concludes that the space of polynomial growth
harmonic functions of fixed degree must be finite dimensional on any
complete manifold satisfying Sobolev inequality. They also addressed
the issues of sharpness of the dimension estimate in their subsequent
papers [8] and [9].

On the other hand, if Cα regularity is dual to the α-Liouville prop-
erty, then one may ask if any local regularity property can be asserted
from the finite dimensionality of the space of polynomial growth har-
monic functions of fixed degree. A simple case to examine is the holo-
morphic function case where we have the convenience of taking powers.
The purpose of this paper is to prove (Theorem 4) that if a complete
Kähler manifold satisfies the weak mean value property then an esti-
mate of the type (0.1) holds with the constant C depending on the ratio
of the volumes of balls. Moreover, if at a point the manifold has at
most polynomial volume decay for small balls, then it will have Cα reg-
ularity (Corollary 5). On the other hand, if the manifold has at most
polynomial volume growth for large balls, then it has the α- Liouville
property (Corollary 8) for holomorphic functions. In fact, we will obtain
a uniform Cα estimate for all holomorphic functions (Corollary 5) if we
assume a volume comparison condition.

A typical situation to apply Theorem 4 is when the Kähler manifold
is a singular algebraic or minimal variety. In this case, the subvariety
inherits a Sobolev inequality from the ambient manifold [11] hence pos-
sesses the weak mean value property. However, in order to deal with
this situation, the balls in Theorem 4 are usually taken to be extrinsic
balls rather than geodesic balls. All the argument in Theorem 4 will
carry through with the one exception that extrinsic balls are not nec-
essarily connected. In order to overcome this, the assumption of local
irreducibility (Definition 6) is imposed at the point in question. In fact,
the local irreducibility assumption is necessary as can be seen by tak-
ing M as the union of the z and w planes in C

2. The singular point
p = (0, 0) disconnects the two copies of C hence violates the local irre-
ducibility assumption. Moreover, the function given by 1 on the z-plane
and 0 on the w-plane will be bounded holomorphic function on M that
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is discontinuous.
Also note that since any complete manifold with Ricci curvature

bounded from below possesses the weak mean value property locally
[6], one can also interpret the local Cα estimate as a weaker form of
Schwarz lemma (see [17], [2], and [13]) on these singular spaces.

In the case of harmonic functions, since it is possible to have a fi-
nite dimensional space of nonconstant bounded harmonic functions on a
complete manifold with the weak mean value property and polynomial
volume growth, we do not expect to have a Cα regularity theory which
holds for all harmonic functions. However, we do expect that for each
singular point p of M , other than a finite dimensional exception, all
harmonic functions are Cα. While this is the ideal local analog for the
global theory, we only managed to prove this theorem for C0 regularity
in Theorem 9. We would like to point out that the local irreducibility
assumption is not necessary in Theorem 9. The finite dimension ex-
ception allows some disconnect components for the complement of the
singular set of M. Moreover, the mean value constant λ also puts a
restriction on the number of disconnected components.

In the last section, we proved a finite dimensionality theorem on the
space

Hd(L,M) =
{
f |Lf = 0 and |f |(x) = O(rd(x))

}
of L-harmonic functions with at most polynomial growth of degree d
defined on a manifold with nonnegative Ricci curvature. The operator
L is an elliptic operator of divergence form with

Lf = div(A(x)∇f)

where A : TM → TM is an endomorphism of the tangent bundle.
The assumption on A(x) is given by measurable coefficients in local
coordinates and also

0 < φ(r) I ≤ A(x) ≤ Φ(r) I < ∞
for all x ∈ Bp(3r

2 ) \Bp( r
2) with

Φ(r)
φ(r)

≤ Ω

for some fixed constant Ω > 0. Note that this assumption on A allows
the operator to grow or decay polynomially as long as the lower bound
and the upper bound are of the same order. Examples of these is when

A(x) = rt(x)A0
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for some −∞ < t < ∞.
We would like to point out that when A is uniformly bounded on

the entire space and further assuming that the operator has an asymp-
totic limit, the issue of finding the dimension of Hd(L,Rn) was studied
by Avellaneda-Lin [1], Moser-Struwe [12], and Lin [10]. For general
uniformly elliptic operators of divergence and non-divergence form, the
issue of finite dimensionality of Hd(L,M) and to estimate its dimension
was studied by the first author in [5] and then by the authors in [7]
and [9]. Theorem 10 is the first situation which the coefficients are not
required to be uniformly bounded over the whole manifold.

1. Preliminaries

Let us first recall the weak mean value property.

Definition 1. A Riemannian manifold M is said to satisfy the weak
mean value property WM(R) if there exist constants b ≥ 1 and λ ≥ 1
such that

u2(q) ≤ λ

Vq(r)

∫
Bq(br)

u2

for all r ≤ R and subharmonic function u defined on the geodesic ball
Bq(bR), where Vq(r) denotes the volume of the ball Bq(r).

As pointed out before, a complete manifold with Ricci curvature
bounded from below possesses the weak mean value property WM(R)
for any fixed R [6]. More generally, Moser’s iteration implies that a
complete manifold M possesses the weak mean value property WM(R)
if the following type of Sobolev inequality S(R, ν) is valid on M :(∫

Bp(r)
|f | 2ν

ν−2

) ν−2
ν

≤ B V
− 2

ν
p (r)

∫
Bp(r)

(r2 |∇f |2 + f2)

for all p ∈ M , 0 < r ≤ R and for all f ∈ H1
0 (Bp(r)), where B > 0 and

ν > 2 are constants.
The following lemma is a simplified version of a lemma used in [5].

It is a key ingredient in most of the finite dimensionality proofs.

Lemma 2. Let M be a Riemannian (not necessarily complete)
manifold satisfying the weak mean value property WM(R). Let K be
a k-dimensional linear space of complex functions on M with the prop-
erty that

∆|u|2 ≥ 0
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for all u ∈ K. If we denote by

At(u, v) =
∫

Bp(t)
uv

the Hermitian inner product on K, then the trace of Ar with respect to
the inner product A(2b+1)r must satisfy

trA(2b+1)r
Ar ≤ λ

for all r ≤ R
2 .

Proof. Let {f1, . . . , fk} be a unitary basis with respect to the Her-
mitian inner product A(2b+1)r. For any ε > 0 sufficiently small, let
q ∈ Bp(r) be a point such that

(1.1) (1 + ε)
k∑

i=1

|fi|2(q) ≥ sup
Bp(r)

k∑
i=1

|fi|2.

By a unitary transformation if necessary, we may assume that fi(q) = 0
for all i ≥ 2 and

k∑
i=1

|fi|2(q) = |f1|2(q).

Applying the weak mean value property, we have

trA(2b+1)r
Ar =

∫
Bp(r)

k∑
i=1

|fi|2(1.2)

≤ Vp(r) sup
Bp(r)

k∑
i=1

|fi|2

≤ Vp(r) (1 + ε) |f1|2(q)
≤ λ (1 + ε)Vp(r)Vq(2r)−1

∫
Bq(2br)

|f1|2

≤ λ (1 + ε)
∫

Bp((2b+1)r)
|f1|2

= λ (1 + ε).

The lemma follows by letting ε → 0. q.e.d.
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Let us remark that when M is a complete, smooth Riemannian
manifold, then the maximum principle asserts that there exists q ∈
∂Bp(r) such that

(1.3)
k∑

i=1

|fi|2(q) = sup
Bp(r)

k∑
i=1

|fi|2.

In this case, we can replace (1.1) by (1.3). Moreover, if we replace (1.2)
by

trA 3r
2

Ar =
∫

Bp(r)

k∑
i=1

|fi|2

≤ Vp(r) sup
Bp(r)

k∑
i=1

|fi|2

= Vp(r) |f1|2(q)
≤ λVp(r)Vq(

r

2b
)−1

∫
Bq( r

2
)
|f1|2

≤ λVp(r)Vq(
r

2b
)−1

∫
Bp( 3r

2
)
|f1|2,

we conclude that

(1.4) trA 3r
2

Ar ≤ λVp(r)
Vq( r

2b)

where we only need to assume that the weak mean value inequality

(1.5) u2(q) ≤ λ

Vq( r
2b)

∫
Bq( r

2
)
u2

is valid for points q which is distance r from p. This observation allows
us to consider elliptic operators of divergence form that may not have
uniformly bounded coefficients. We will address this issue in §5.
Lemma 3. Let M be a Riemannian (not necessarily complete)

manifold satisfying the weak mean value property WM(R). Let K be
a k-dimensional linear space of complex functions on M with the prop-
erty that

∆|u|2 ≥ 0
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for all u ∈ K. If k > λ and if

At(u, v) =
∫

Bp(t)
uv

denotes the Hermitian inner product on K, then the determinant of Ar

with respect to the inner product AR must satisfy

detAR
Ar ≤

(
k rβ

λRβ

)k

for all r ≤ R, where

β =
ln k − lnλ

ln(2b+ 1)
.

Proof. Lemma 2 and the arithmetic-geometric mean inequality as-
sert that

detA(2b+1)r
Ar ≤

(trA(2b+1)r
Ar

k

)k

≤
(
λ

k

)k

.

Setting γ = (2b+1)−1 and r = γiR for i = 0, 1, . . . , we can rewrite this
as

detAγiR
Aγi+1R ≤

(
λ

k

)k

.

Iterating this inequality j times by letting i = 0, . . . , j − 1, we have

detAR
AγjR ≤

(
λ

k

)jk

.

In particular, we have

detAR
Ar ≤

( r

R

) k(ln λ−ln k)
ln γ

=
( r

R

) k(ln k−ln λ)
ln(2b+1)

if r = γjR for some j = 1, 2, . . . . When γj+1R < r < γjR, we observe
that

detAR
Ar = detAR

AγjR detA
γjR

Ar.
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By choosing an unitary basis {f1, . . . , fk} with respect to AγjR that
diagonalizes Ar, we note that

detA
γjR

Ar =
k∏

i=1

∫
Bp(r)

|fi|2

≤
k∏

i=1

∫
Bp(γjR)

|fi|2

= 1.

Hence

detAR
Ar ≤ detAR

AγjR

≤
(
λ

k

)jk

.

Using the fact that γj+1R < r and assuming that k > λ, we get(
λ

k

)jk

≤
(
k

λ

)k ( r

R

) k(ln k−ln λ)
ln(2b+1)

,

which implies that

detAR
Ar ≤


 k r

(ln k−ln λ)
ln(2b+1)

λR
(ln k−ln λ)
ln(2b+1)




k

for all r ≤ R. q.e.d.

2. Holomorphic Functions

We are now ready to prove the Hölder estimate for holomorphic
functions.

Theorem 4. Let M be a Kähler (not necessarily complete) man-
ifold satisfying the weak mean value property WM(R). Suppose f is a
holomorphic function defined on the geodesic ball Bp(R). For all r ≤ R
and for all k + 1 > λ, if we denote ω(r) to be the oscillation of f on
Bp(r), then

ω(r) ≤ Ck

(
Vp(R)
Vp(r)

( r

R

)β
) 1

k(k+1)

ω(R),
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where C > 0 is a constant depending on λ and b alone, and

β =
ln(k + 1)− lnλ

ln(2b+ 1)
.

Proof. We may assume that the function f is nonconstant and nor-
malized to have ω(R) = 1, infBp(R) |f | = 0, and supBp(R) |f | ≤ 1. Let us
consider the linear space K spanned by the functions {1, f, f2, . . . , fk}.
Then K is of complex dimension k + 1. For h ∈ K with AR(h, h) = 1,
there exist complex numbers c0, c1, . . . , ck such that h =

∑k
i=0 cif

i.
Hence

1 = AR(h, h)

=
∫

Bp(R)

(
k∑

i=0

cif
i

) k∑
i=0

cif i




≤
∫

Bp(R)

(
k∑

i=0

|ci|
)2

≤ Vp(R)

(
k∑

i=0

|ci|
)2

,

and

(2.1)

(
k∑

i=0

|ci|
)2

≥ 1
Vp(R)

.

On the other hand, we can choose points z0, zk ∈ Bp(r) such that

|f(z0)− f(zk)| ≥ ω(r)
2

.

Since f(Bp(r)) is connected in the complex plane C, for any s ≤ |f(z0)−
f(zk)|, we have

∂Bf(z0)(s) ∩ f(Bp(r)) �= ∅.
Therefore, for i = 1, . . . , k−1, we can choose point zi ∈ Bp(r) such that

f(zi) ∈ ∂Bf(z0)

(
i

k
|f(z0)− f(zk)|

)
.
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In particular, we have

(2.2) |f(zi)− f(zj)| ≥ ω(r)
2k

for any i �= j with i, j = 0, 1, . . . , k.
Now consider the linear system

k∑
i=0

cif
i(zj) = h(zj)

for j = 0, . . . , k. Let A denote the matrix

A =



1 f(z0) . . . fk(z0)
1 f(z1) . . . fk(z1)

. . .
1 f(zk) . . . fk(zk)


 .

Then the linear system can be written as

A




c0

c1
...
ck


 =




h(z0)
h(z1)
...

h(zk)


 ,

and 


c0

c1
...
ck


 = A−1




h(z0)
h(z1)
...

h(zk)


 .

Cramer’s rule asserts that the (ij)th entry of A−1 is given by
∣∣(A−1)ij

∣∣ = ∣∣∣∣detMij

detA

∣∣∣∣ ,
where Mij is the (ij)th minor of A. Since |f | ≤ 1, we have

|detMij | ≤ k!.

Also, by (2.2),

|detA| =
∏

0≤i<j≤k

|f(zi)− f(zj)|

≥
(
ω(r)
2k

) k(k+1)
2

.
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If we let g(r) = supBp(r) |h|, then

|ci| ≤ (k + 1) k! (2k)
k(k+1)

2

ω(r)
k(k+1)

2

g(r).

Hence we conclude that
k∑

i=0

|ci| ≤ (k + 1)2 k! (2k)
k(k+1)

2

ω(r)
k(k+1)

2

g(r).

Combining with (2.1), we obtain the estimate

1
Vp(R)

≤ (k + 1)4 (k!)2 (2k)k(k+1)

ω(r)k(k+1)
g2(r),

hence

(2.3) g2(r) ≥ Vp(R)−1 (k + 1)−4 (k!)−2 (2k)−k(k+1) ω(r)k(k+1).

On the other hand,
g2(r) ≤ 2|h(q)|2

for some q ∈ Bp(r) and by the weak mean value property, we have

g2(r) ≤ 2|h(q)|2

≤ 2λ
Vq(2r)

∫
Bq(2br)

|h|2

≤ 2λ
Vq(2r)

∫
Bp((2b+1)r)

|h|2.

Thus, applying to (2.3), we conclude that

∫
Bp((2b+1)r)

|h|2 ≥ (2λ)−1 Vq(2r) g2(r)

(2.4)

≥ (2λ)−1 (k + 1)−4 (k!)−2 (2k)−k(k+1) ω(r)k(k+1) Vp(r)
Vp(R)

.

Since h ∈ K with AR(h, h) = 1 is arbitrary, (2.4) implies that

detAR
A(2b+1)r ≥ (2λ)−(k+1) (k + 1)−4(k+1) (k!)−2(k+1) (2k)−k(k+1)2

(2.5)

· ω(r)k(k+1)2
(

Vp(r)
Vp(R)

)k+1

.
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On the other hand, Lemma 3 asserts that

detAR
A(2b+1)r ≤

(
(k + 1) ((2b+ 1)r)β

λRβ

)k+1

.

Hence combining with (2.5), we have

ω(r) ≤
(
2k2+k+1 (k + 1)5 (k!)2 kk(k+1) (2b+ 1)β

( r

R

)β Vp(R)
Vp(r)

) 1
k(k+1)

≤ C k

(
Vp(R)
Vp(r)

( r

R

)β
) 1

k(k+1)

,

where
β =

ln(k + 1)− lnλ

ln(1 + 2b)
.

This proves the theorem. q.e.d.

3. Applications

We will now apply the estimate of Theorem 4 to obtain Hölder es-
timate and α-Liouville property for holomorphic functions.

Corollary 5. Let M be a Kähler (not necessarily complete) man-
ifold satisfying the weak mean value property WM(R). Suppose there
exist constants C0(p,R) > 0 and ν > 0 such that

C0(p,R)Vp(R) ≤
(
R

r

)ν

Vp(r)

for all r < R. Then there exists α = α(ν, λ, b) depending only on the
quantities ν, λ, and b such that if f is a holomorphic function defined
on Bp(R) then its oscillation ω(r) must satisfy

ω(r) ≤ c(λ, b, C0(p,R), ν)ω(R)
( r

R

)α
.

In particular, if the constant C0 is independent of p and R, that is, there
exist constants C1 > 0 and ν > 0 such that

C1 Vp(R) ≤
(
R

r

)ν

Vp(r)

for all p ∈ M and r < R, then we obtain the uniform estimate

ω(r) ≤ c(λ, b, C1, ν)
( r

R

)α
ω(R).
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Proof. Applying the volume lower bound to Theorem 4, we have

(3.1) ω(r) ≤ Ck

(
rβ−ν

C0 Rβ−ν

) 1
k(k+1)

ω(R).

By choosing k sufficiently large such that β ≥ 2ν this implies that

ω(r) ≤ c(λ, b, C0, ν)
( r

R

)α
ω(R).

This proves the first part of the corollary. The second part of the corol-
lary follows immediately. q.e.d.

Observe that the above argument can be applied to the situation
when M is a submanifold of another Riemannian manifold N. In this
case, one will replace the intrinsic distance function by the extrinsic
distance function. Moreover, the geodesic balls should be replaced by
extrinsic balls obtained by taking geodesic balls of N intersecting M.
Particular cases which the theorem may apply are complex subvarieties
of a Kähler manifold or minimal submanifolds which are Kähler. In
these cases, the Kähler variety M may be singular with the singular set
given by Σ. In this situation, the theorem will apply to the incomplete
manifold M \ Σ. Due to the fact that we are considering the extrinsic
ball, the set Bp(R) \ Σ may not be connected, hence a connectedness
assumption is required.

Definition 6. A singular submanifold M with singular set Σ is said
to be locally irreducible if for any extrinsic ball Bp(r) with sufficiently
small radius r, the set Bp(r) \ Σ is connected.

Corollary 7. Let M be a locally irreducible Kähler subvariety of a
complete manifold N . SupposeM satisfies the weak mean value property
WM(R) and the volume of extrinsic balls satisfy

C0 r
α ≤ Vp(r)

for some constants C0 > 0 and α > 0, and for all r ≤ R. Suppose f is a
bounded holomorphic function defined on the extrinsic ball Bp(R) with
p ∈ Σ, then f must be Hölder continuous at the point p.

Note that when M is an algebraic variety, it is known that bounded
holomorphic functions can be extended across the singular set if M is
irreducible and locally irreducible. In this case, the variety inherits
a Sobolev inequality from CP

N , hence satisfies the weak mean value
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inequality. Moreover, the volume comparison condition is also satis-
fied with the constant involving the multiplicity of the variety. Hence
Corollary 7 can be viewed as a generalization of this theorem.

Corollary 8. Let M be a Kähler manifold satisfying weak mean
value property WM(R) for all R > 0. Suppose that M has polynomial
volume growth of order ν. Then there exists a positive number α such
that every holomorphic function on M of growth order at most α must
be constant.

Proof. Since M has polynomial volume growth of order ν, we have

Vp(R) ≤ C2 Vp(1)Rν

for all R ≥ 1. Let f be a holomorphic function on M and ω(r) its
oscillation on the ball Bp(r). Then by Theorem 4, we conclude that
there exists α > 0 such that

ω(1) ≤ cR−α ω(R)

for all R ≥ 1. In particular, if f is of growth order strictly less than
α, then by letting R go to infinity we get ω(1) = 0. Thus, f must
be constant by the unique continuation property of the holomorphic
functions. q.e.d.

4. Continuity of Harmonic Functions

Although we are still unsuccessful in proving Hölder continuity for
the real case — harmonic functions — we manage to prove that for
any given point, other than a finite dimensional exception, all harmonic
functions are continuous.

Theorem 9. Let M be a singular Riemannian manifold satisfying
the weak mean value property WM(R). Let us denote the singular set of
M by Σ. Let p ∈ Σ be a fixed point with the property that the volume of
the ball of radius r centered at p satisfies

Vp(r) ≥ C rν

for some constants C, ν > 0. Then there exists a k-dimensional subspace
H of bounded harmonic functions defined on Bp(1) with

k ≤ λ (2b+ 1)ν ,

such that if f is a bounded harmonic function defined on the geodesic
ball Bp(1), then f − φ is continuous at p for some φ ∈ H.



324 peter li & jiaping wang

Proof. To prove the theorem, it suffices to show that for any subspace
K of bounded harmonic functions defined on Bp(1), with dimension
k > λ (2b + 1)ν , there must have at least one nonzero function f ∈ K
such that f is continuous at p. Arguing by contradiction, if this is not the
case, then for each f ∈ K, there exists εf > 0, such that the oscillation
ωf (r) of f on the ball Bp(r) must satisfy

ωf (r) ≥ εf

for all r. Observe that since ωf (r) is a monotonic non-increasing function
of r, εf can be taken to be

εf = inf
r→0

ωf (r).

We now claim that εf > 0 is a continuous function defined on the
L2(Bp(1))-unit sphere S(K) of K. Then the fact that K is finite dimen-
sional implies the set S(K) is compact and we can choose

ε = inf
f∈S(K)

εf > 0

such that
ωf (r) ≥ ε

for all r ≤ 1 and for all f ∈ S(K).
To prove the continuity of εf , we consider the function

ft = f cos t+ h sin t

where f and h are orthogonal in S(K). Obviously ft ∈ S(K) and ft → f
as t → 0. Then for x, y ∈ Bp(r) and 0 ≤ t ≤ π/2, we have

ft(x)− ft(y) = (f(x)− f(y)) cos t+ (h(x)− h(y)) sin t

≤ ωf (r) cos t+ (h(x)− h(y)) sin t.

However, the mean value inequality implies that

h2(x) ≤ λ

Vx(b−1(1− r))

∫
Bx((1−r))

h2

≤ λ

Vx(b−1(1− r))

∫
Bp(1)

h2

=
λ

Vx(b−1(1− r))
.
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Since the same estimate applies to the point y, we conclude that

ωft(r) ≤ ωf (r) cos t+ C

(
inf

x∈Bp(r)
Vx(b−1(1− r))

)− 1
2

sin t.

Letting r → 0, we have

εft ≤ εf cos t+ C
(
Vp(b−1)

)− 1
2 sin t.

Obviously, by reversing the role of f and ft, we see that εft → εf as
t → 0, which proves the continuity of εf and the existence of ε.

The above argument also proved that

ωf

( r

4b

)
≤ C

(
inf

x∈Bp( r
4b)

Vx

(
3r
4b

))− 1
2
(∫

Bp(r)
f2

) 1
2

≤ C V
− 1

2
p

( r

2b

) (∫
Bp(r)

f2

) 1
2

.

In particular,

(4.1) ε2 ≤ C V −1
p

( r

2b

) ∫
Bp(r)

f2

for all f ∈ S(K). However, according to Lemma 3, we have

detA1Ar ≤
(
k rβ

λ

)k

for β = ln k−ln λ
ln(2b+1) . By choosing an A1 orthonormal basis {f1, . . . , fk},

which diagonalizes Ar, we have

k∏
i=1

∫
Bp(r)

f2
i ≤

(
k rβ

λ

)k

.

Combining with (4.1), we conclude that

ε2k ≤ Ck V −k
p

( r

2b

) (k rβ

λ

)k

.

Using the assumption on the lower bound of the volume, we have

ε2 ≤ C k rβ−ν .
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This gives a contradiction if we choose

ln k > ν ln(2b+ 1) + lnλ

and let r → 0. q.e.d.

5. Polynomial Growth L-harmonic Functions

In this section, we will consider elliptic operator of divergence form
on a complete Riemannian manifold M given by

Lf = div(A(x)∇f)

where A(x) : TxM → TxM is an endomorphism of the tangent space
satisfying

〈A(x)V, V 〉 > 0

for all nonzero V ∈ TxM. We also assume that in terms of local co-
ordinates, the coefficients of A(x) = (aij(x)) are measurable functions.
Moreover, there exists a constant Ω > 0, such that,

(5.1) 0 < φ(r) I ≤ A(x) ≤ Φ(r) I < ∞

for all x ∈ Bp(3r
2 ) \Bp( r

2), with

(5.2)
Φ(r)
φ(r)

≤ Ω.

Theorem 10. Let M be a Riemannian manifold with nonnegative
Ricci curvature. Let us define

Hd(L,M) =
{
f |Lf = 0 and |f |(x) = O(rd(x))

}
to be the space of L-harmonic functions with polynomial growth of degree
at most d. Under the ellipticity assumption (5.1) and (5.2), the space
Hd(L,M) must be of finite dimension. In fact, there exist constants
C1(Ω, n) > 0 and C2 > 0 depending only on the described variables such
that

dimHd(L,Rn) ≤ C1 exp(C2d).

Proof. The strategy is to observe that if f is an L-harmonic function,
then f2 still satisfies the maximum principle. To use the remark preced-
ing Lemma 3, we need to verify that the weak mean value inequality is
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valid for the operator L. This is indeed the case if one applies the Moser
iteration argument on the ball Bq( r

2) with q being distance r from the
fixed point p ∈ M. In this case, it is known that only the ratio of the
upper and lower bounds of the ellipticity constants, Ω, is involved in
the dependency of λ. Since we are using the background Riemannian
measure, the ratio

Vp(r)
Vq( r

2b)
≤ Vq(2r)

Vq( r
2b)

≤ (4b)n

by the volume comparison theorem. Hence the estimate (1.4) becomes

trA 3r
2

Ar ≤ λ (4b)n.

Applying Lemma 3, rather its argument, and letting b = 5
4 , we obtain

for all r < R,

detAR
Ar ≤

(
k rβ

λ 5n Rβ

)k

if k = dimHd(L,M), with

(5.3) β =
ln k − ln(λ 5n)

ln(3
2)

.

However, the growth assumption of Hd(L,M) implies that

detArAR ≤ CRk(2d+n).

Hence, together with (5.3), we conclude that

β ≤ 2d+ n,

which proves that k must be finite and bounded by

k ≤ C1 exp(C2 d)

for some constants C1, C2 > 0. q.e.d.

We would like to point out that in the previous proof, we have only
used the fact that M has a Sobolev inequality and satisfies the volume
comparison theorem. These two conditions can replace the assumption
that M has nonnegative Ricci curvature. In particular, if M is quasi-
isometric to a manifold with nonnegative Ricci curvature, then these
two properties will hold.
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à coefficients pèriodiques, Compt. Rendus Acad. Sci. Paris 309 (1989) 245-250.

[2] Z.H. Chen, S.Y. Cheng & Q.K. Lu, On the Schwarz lemma for complete Kähler
manifolds, Sci. Sinica 22 (1979) 1238-1247.

[3] A. Grigor’yan, The heat equation on noncompact Riemannian manifolds, Math.
USSR Sbornik 72 (1992) 47-77.

[4] P. Li, Lecture Notes on Geometric Analysis, Lecture Notes Series, 6 - Research
Institute of Mathematics and Global Analysis Research Center, Seoul National
University, Seoul, 1993.

[5] , Harmonic sections of polynomial growth, Math. Research Letters 4 (1997)
35-44.

[6] P. Li & L.F. Tam The heat equation and harmonic maps of complete manifolds,
Invent. Math. 105 (1991) 1-46.

[7] P. Li & J.P. Wang, Mean value inequalities, Indiana Math. J. 48 (1999) 1257-1283.

[8] , Counting massive sets and dimensions of harmonic functions, J. Differ-
ential Geom. 53 (1999) 237-278.

[9] , Counting dimensions of L-harmonic functions, Ann. Math. 152 (2000)
645-658.

[10] F.H. Lin, Asymptotically conic elliptic operators and Liouville type theorems, in
‘Geometric analysis and the calculus of variations’, Internat. Press (1996) 217-238.

[11] J.H. Michael & L. Simon, Sobolev and mean-value inequalities on generalized
submanifolds of R

n, Comm. Pure Appl. Math. 26 (1973) 361-379.

[12] J. Moser & M. Struwe, On a Liouville-type theorem for linear and nonlinear
elliptic differential equations on a torus, Bol. Soc. Brasil Mat. 23 (1992) 1-20.

[13] H.L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment.
Math. Helv. 55 (1980) 547-558.

[14] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differ-
ential Geom. 36 (1992) 417-450.
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